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We have calculated the connection of the frequency distribution of thg orbital
elements (large semi-axis, excentricity, inclination) with the inter-planetary dust
density and with the number of particles falling upon the earth, for a rotation-
symmetrical dust cloud. We have derived for the frequency distribution a model that
represents the density distribution of the dust on the basis of observations of the
zodiacal light. The distribution of the orbital elements in the case of meteors,
that is to be anticipated on the basis of the model, has been compared with the
empirical material. When we consider the varying order of magnitude of the radius
of zodiacal light particles (lo'scm) and of meteors (13'1cm), then the model will
be satisfactory as a first approximation, particularly for the distribution of the
inclination and for the distribution of the perihelion distances. When we use, in
the case of massive incidence, the formula

M‘—‘Q'Uw'd

When Q is the cross-section of the earth and d is the interplanetary density of the \\\\\

particles, then it will follow from the model that the value of the "effective
velocity of the incidence™, Uc.pp, will be in units of the velocity of the orbit of
the earth - equal to 0.95.
INTRODUCTION
Up to this time, little has been known as to the distribution function of the

orbital elements of the dust-particles within the solar system. Statements relating
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ﬁo it may be obtained by three approaches: By way of the orbits of the sources of

the dust; by way of the distribution of the orbital eloments of meteors: and by way
of the density distribution of the dust, which - in turn - may be found by means
of observations of the zodiaocal light., In this paper, the last approach will be
considered in some detail, since the first two methods have not yet succeeded in
providing sufficient information regarding the problem.

The comets (F.L. Whipple, 1955) as well as the small planets ( SPiotrowski 1954)
are probably capable, due to their gradual decomposition, of replacing the dust,
that disappears continously from inter-planetary space as a result of disturbances
and of being gathered up by the sun and the planets. But the share supplied by each
one of these groups is unknown. In addition, the frequency of the orbital elements
in the sources is being observed in a distorted manner, due to the probability of
their discovery. Finally, the orbits of the dust particles are subject-after they
have been separated - to changes due to disturbances by planets, due to the
Poynting-gobertson effect, and due to collisions with inter-planetary gases. For
that reason, the results obtained by this method are very unreliable,

By using the ocollision probability of the particles with the planets (E.Oepik,
1951) it is possible to calculate the interplanetary frequency from the frequency
of the orbital elements of the meteors. This was done, for the first time, for the
orbital inclination of a small material of photographic orbits of meteors, by
FeL. Whipple (1954). within the immediate future, the number of exactly determined
orbits of meteors will inorease tremendously, on the basis of two-station observations
by means of Super-Sehmidt-meteor-cameras and of radar observations from three
stations, so that it will be possible to use that method to a greater extent. But,
it will supply data only for larger dust particles (r. >'10'lcm), and only for
those that contribute to the density within the distance of the earth from the sun,
But, there is the risk that, due to the collection of dust on the part of the earth, the
density of the distribution may present a disconbtinuity at this location (E. Oepik,

1951). For that reason, we shall calculate - in the following investigation-the
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frequency of the orbital elements of the meteors by way of controlling our results,
%rom an interplanetary distribution that has been obtained by the third one of
the afore-mentioned methods,

Zodiacal light observations provide us with information on the dust density
up to a solar distance of some l.5A.U. Here, possible discontinuities of the
density near the orbits of the planets play hardly any part., This independence of
the special conditions near the earth is an essential advantage of the considerations
being made here. It is true that assumptions regarding the scattering medium enter
into the solution of the integral equation of the density on the basis of the
luminosity of the zodiacal light. In earlier investigation (last by H. C. van de Hulst,
1947), the entire zodiacal light had been ascribed to scattering dust particles,
so that a siow decrease of the density from the sun inte an outward direction was
the result obtained. On the other hand, A. Behr and H. Siedentopf (1953) as well
as H. Elsasser (1954) explain the measured polarization of the zodiacal iight on
the basis of scattering on free electrons. The density share of the dust will then
become smaller, partioculsriy near the sun; it follows that the density within the
eciiptic, from 0.6 A.U. on in an outward direction, is independent of the distance
from the sun. This last model of the dust density has been used as the basis of the
frequengy distribution of the orbital elements as developed in the following.

By means of plausible assumptions, it is possible to limit the investigation
to the distribution of the large semi-axes &, the eccentricities e, and the in-
clinations i. The relation between the density distribution in a rotation-
symmetrical dust cloud as described by two variables, and of the distribution function
of the three orbital elements will be established in the first part. Suggestions
in regard t¢ the method adopted were found in the afore-mentioned paper by
E. Oepik (.915), whose collision formula will here be,once more the resuit,.by means
of a more general method on the besis of the density relation. The indefinite
nature of the probiem - determination of a function of three variables on the basis

of a funotion of two variables -« will become evident in the discussion of simplse



L

.models in the second part, inasmuch as but few statements can be made as to the
distribution of the eccentricities. But, it is hoped that this defect may be
alleviated, to some extent, by the examination of the distribution function by
means of the data relating to the meteors, as soon as more material in that respect
has become known to us than we were able to use in the preliminary ocomparison of the
sections of the second part.

I. Integrals for particle density and particle incidence on the earth.

1., Suppositions

In order to reduce the number of the paremeters, we shall require suppositions
in regard to the distribution function ot the orbital elements of the interplanetary
dust particles. For the sake of simplicity, we shall consider the distribution
function to be independent of the particle size; it is true that this will be correct
only as to the first approximation, due to the stronger effect o1 aisturbances on
small particies. The following equations will, however, appiy also to each particie
size separately.

For three of the six orbital elements, we made certain assumptions of even
distribution; 1. Por a certain form and position or Tae orbit, the number of the
particles that are passing through the perihelion within the unit of time, shaii
bs constunt (independence of the distribution function from the time Tof the
perinelion passage); 2. For a certain form of the orbit and for a certain in-
ciination, the particles shall be distributed evenly over the possible perihelion
lengths [V and over the possible knot-lengthsSL . The assumpticn regarding SU.
means that a rotation-symmetrical density will be assumed within the interplanetary
space (rotation axis through the sun), The assumpvion regarding &4 means that the
plane through the sun, which is vertical to the axis of rotation, will have to be
the symmeiry plane of the density distribution. When this plane does uot coincide
with the ecliiptic-according to ¢. Hoftmeister (1940), the symmetry plane of the
zodiacal light closeiy follows the orbits of the planets so that it is likely that

the invariable plane of the planetary system can be considered, in the first
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_approximation, & symmetry plane - then the inclinations i will have to be calculated
from it. As to the assumption of the length of the knots, their distribution in the
case of the comets speaks in its favor (ef. J. G. Porter, 1952, pe43). But, it is
not sufficient for a perfect representation of reality, particularly inasmuch as the
falling of meteors is concerned, since according to Ge. S. Hawkins (1956), the frequency
of the sporadic meteors show, in radar observations, a pronounced seasonal movement
even after the effect of the apex movement has been set aside by corrections.

On the basis of the more recent results of meteoric reasearch. we shall be able
to limit ourselves to elliptical particle orbits; it will suffice to consider the
orbits to be pure Keplsr orbits.

2. The distribution function of the orbital elements and the density

with the aid of the suppositions of the preceding paragraphs, we shall be able
to clarify the density contribution of the particles with the orbital eclements a,
e, end i (abbreviated; particles /a,e,i/) in the following way: The orbit
Z;, e, i,uu,SZKJ7 is time-independent, according to suppesition 1, but it is not
occupied evenly by particles. When we vary &3 , we shall receive a (doubly ocoupied)
circular ring, within the orbital plane. When we varySfl, in addition to {2, then
we shall obtain (again, doubly spread) a space area (one fourth of the cross section
has been shaded in Fig. 1!) that is limited by two rotation cones and by two partial
spheres. Exceptions are the orbits with e Z 0 (degeneration of the area into the
surface of a spherical zone) and i = 0 (degener;tion into a circular ring). These

limiting cases will have to be excluded from the derivation, for the time being.

z

arr-e) ' 2ae ! e

Fig. 1. Illustration of the caloulation of the density coentribution of the
orbits ( a, e, i ).
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Now, the fraction ENT(;”L)' of all particles E,e,l will have to be calculated
that exists witain a torus having a large radius of Q and a small radius of d and
being located at a distance z from the elliptic (Fig. l1). When one orbit of
Z_Zf, e,i,w,ﬂ.J passes through @ ,z, then orbits having a somewhat different peri-
helion length it will also intersect the aforementioned torus. When o +d |[?] and
w—do. gre the perihelion lengths for which the torus will just be touched, then
the fraction i‘zﬁ‘fﬂ‘ of all the orbits [é.',e,g will intersect the torus. A

n

factor of 4 will take into consideration that four of such intervals exist for 0<w <2x
and 0= Qé'—’ﬂLDue to the supposition 1 relative to the perihelion passages, the
fraction of the particles E,e,i,tﬁ ,IZ,] in the orbital sector 2 x dr around €,z
will be equal to the probability of the location of one single particle in that sector.
When the particle requires a time of 2 x dt to pass through the sector, then this
probility will amount to 2 x dt/T, when T designates the time of the revolution.

The fraction of the particles om the neighboring orbits within the torus
relates to those through f, z like the length of the chord to the diameter in
the circle. We shall obtain the mean fraction of the particles that are within the
torus, by multiplying 2 x dt/T by the ratio of the mean length of the chord and
of the diameter in the circle, i.e. with ‘W /4,

The value sought is the product of the two fractions calculated, hence

dN(g,z)_2dw-dt
2 (1)

The calculation of dtw and dt is the problem of the following sections. First,
we shall have to compile a few basic equationms.

A representation of the orbit [a,e,i,wj within the e z-system of
coordinates, with the true anomaly V as its parameter, will follow from the known
equation for the radius vector, viz.

a(l —et)

1+ ecosv (2)

r=Ves -

and from the equations
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2= r-8int -sin(w + )

[ . 3
g=r-[/l—sin3i~sin2((ufv),. (3)

which may be read from the rectangular spherical triangle of Fig. 2. The surface

equation

f;_j —YEMa(l = et)

(4)
and Keplert's Third Law
22 _ JGg (5)
T T g3 .

will apply for the connection with the time. As to the length, the Astronomical

Unit (A.U.) will be used in the following as unit, while we shall use the year
as the unit of time and the mass of the sun,| ®»', as the unit of mass. We

shall then have to write the gravitation constant as G :477'7.'

A

Fig. 2. Connection bewteen the orbital elements and the coordinates gand Ze

The calculation of dw.

Let us consider, once more, the point @, z, through
which the orbit /a,e,i,(0/is passing. The change of the perihelion length during

the transition to a neighboring point will be

dw

a
dw=—5%dg+—az—dz-

In order to find the deo of the orbit that touches the circle with dr around ¢, 2z,

we shall have to choose dS) and dz in such a way that the neighboring point will

be located on the vertical of the orbit a,e,i,tf], and that dez + dz2 will be

equal to dr2, Now, the direction of the orbital tangent will be determined by the
% 22}, while,the direction of the vertical will be determined by

(~21 d¢
dv °’ W)w

vector (
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Hence, we shall have
I i

: i
do ,_ dz | dp\2 9z \2|
do=dr 3847, dz=— dr-g - 47, 2= (32) + (3 |

and-only the amount will be of interest in the following-

ldos| = |dr| - 4-1.121.2_22. 32;;

(6)
The further task will be merely a calculating job. We differentiate

equation (3) for v after we have eliminated r from it, with the aid of (2).

In the result, W and v may be eliminated by expressions in W and z. Then, the

first equation of (3) will be solved for &) , v will be eliminated with the aid of

dw

d
equation (2), and 22 as well as will be formed, while sin v will be

de

eliminated. Then the expressions will be developed from the partial derivations,

with the following result:

dr| V2~——— 1 — e?) cosi
T'V2——————(l—e’) -‘/sin’i—i:cos’i ( )
a r e

Calculation. of dt. Since the connection between modifications of the time

[do| =

and of the true anomaly is known by the surface equation, we shall calculate its

modification during the passage through the torus. The following will apply:

2
dz? + do?= (Z—:) dv? + (Z-gfdv'z: dr?

|dv| = |dr| - 471, (8)

The denominatar of the right side has already been calculated for |[dow| . It

follows then, with the aid of equations (4) and (5), that

Id1| dri
L b = (9)
T 2nr( )/V2—————-(1—e’)c°5’

The integral relation for the density, Fquation (1) indicates the relative .

frequency of the partiocles /a,e,i/in a torus having a cross-section of <Y (dr)2
and a circunference of 27)'}) . Hence, we shall obtain the density contribution

n¥(a,e,i) of this type of particles, in a volume element of d @ xdz x 1=1
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. dround the point @ /Illegible/ by multiplying by N(aie,i)and by dividing by

2rp - w(dr)t: dol - 16 - ,
‘ ] l-1d¢| - N{a,e,1)
w(a,e,i; 0,2) = HEALEELD (10)

By means of integration over all possible values of the orbital elements, we
shall obtain the particle density in the point under consideration, with the aid of

equations (7) and (9):

 N@,ei)da-de-di -
l1gfjf ” 2———~—-(1—e’) Vsm’;-—cos’l‘ (11)

The possible values of the orbital elements which are evident already from the

clear explanation given at the outset, will also result from the roots in Equation
(11). The perihelion distance will have to be smaller than r, while the aphelion

distance will have to be larger:

a(l—e)<r=<a(l +e).

This assumption will supply, for a and e, the integration range of
1 a 1!
B l+e§7§l—-e‘ (12)
0=sex1l .

(Fig. 5, p. 24)

Furthermore, only those particles will contribute to the density that are in orbits,
the inclination of which is so large that the orbital plane will, at least, touch

the torus around @, 2z, i.e., when we shall have

!ﬂéltgilég (13)

3. Incidence of particles on the earth.

The orbit of the earth will be idealized as a circular orbit having a radius
of 1. The radius of the earth, R, will be considered small in relation te all other
lengths that will occur. The following formulae will apply directly to other
planets also, when we use their large semi-axis as the unit of length and their
time of revolution as the unit of time. The reference plane introduced in I, 2 is

the orbit of the earth or of a planet.
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. If we also introduce - besides the coordinates € and 2z as used up this point -
the ecliptical length Z » then it is evident on the basis of our earlier consid-
erations that the density contribution of the particles ZF}e,i in one point §>,z,2

will be supplied solely by two intervals of dev and two intervals of df€7 . This
means: In each point of their orbit, the particles with 15,9{57 approach the

earth from four discrete directions with a uniform relative velocity of U, since
that velocily depends solely on a, e, i, The density of the flow will be determined
by n*(a,e,i), in accordance with equation (10). The earth will lay hold of the
particles having an "effective cross-section™ of 7TR*2, by which the effect of

the attraction of the earth will be taken into account, at least, in the first
approximation; for that reason, the cross-section will depend on the relative
velocity. Since the year serves as the unit of time, we shall obtain the number

of the meteors or micro-meteors with the original elsments a, e, and i per day by
. 1
m*(a, e, 1) = 5z= AR*}(U) - U(a, ¢, ) - n*(a, ¢, i; 1,0) . (14)

Their total number will be determined by integrating over the orbital elements when,
for the integration range in I, we shall have to assume that 2r=l.

The relative velocity may be obtained from the volocity of the circular

orbit of the earth, V®*2 A.U./a and from the velocity W of the particle that is

assumed to have the components vf?,MQ,VVZ. We shall then have

U=Y(V-wltwl+wl=)Vir wt_ 2V, .

(15)

According to the energy equation, we shall find that, at a distance of r= 1, thers

will be

w2=4n2(2 _‘i)_
a

The tangential velocity within the orbital plane is, for r:zl, according to
dv —
equation (4), 1.7 =2xa)a(l—¢) , The projection of this velocity into the

reference plane will be, during the passage through the knot, as follows:
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w,=2nx V&Tlﬁ"—"ﬂcosi; |

U=2aU'= 27;]/3—%_2Va'(f;"e‘2)cosi.! (18)

While the earlier equations were valid independently of the force of attraction

of the central mass, the central mass does enter into the relative velocity. For
that reason, we shall have to keep in mind that, in the case of small particles,
the effect of gravity will be cancelled out, in part, by the radiation pressure.
Since hoth forces have the same law of distance, we shall have to take the
radiation pressure. into consideration by introducing a reduced solar mass of

MW= M, (1 - 9), when & signifies the ratio of the radiation force and the
gravitation force of the sun. ¥or such particles, we shall find, in lieu of

equation (16), that

U= 2a]/14 (1-0)(2-5) —2/all = ) (1 =8 cosi. (17)

Numerical data concerning & as dependent on the radius of the particle for
totally-reflecting and metal particles may be found in C. Schalén's paper (1938).
Roughly, it is possible to state that & will assume such values, in the case of
radii of the particles that are smaller than 1073@m, that it cannot be disregarded
any longer.

As to the effective catchment cross-section Z?huffangquerschnitt:7hf the
earth, we shall obtain an estimate by means of the well-known energy-impulse
consideration., It is a rather rough one, since the attraction of the sun is
being disregarded. Then, the orbits of the particles near the earth will be
hyperbolae having the center of the earth as their center. We shall then try to
find the hyperbola that will just be touching the earth by its vertex. When U is
the relative velocity of a particle in relation to the earth, at a large distance,

then the velocity in the vertex will be

8ntu

V= —p 4+ U2
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according to the energy equation. For the distance R* of the orbit from the parallel

to the velocity vector, at a large distance from the earth, through the center of
the earth, i.e., for the ™thrust parameter™, the impulse theorem will!supply the

condition that

R* U = R-v.
It follows therefore that
Rei= B2 (14 o). (18)

S50 as to remain within the chosen system of measurements, we shall have to
ex press }J, i.e. the mass of the earth, in units of the mass of the sun, i.e.,
J =800 x 1078; R is the radius of the earth plus the effective height of the

atmosphere (some 130 km). Thereby, the constant within the parentheses will became

2
E 0.1386 .
For 8< 1, the relative wvelocity (17) will achieve its minimum on the edge
of (12): 4=t (l-éagl) or a=f~l—— (1£a<x) for iz0® - and its

1—e

maximum, also at that location, for iz 180°. fThere, the following will apply:

| hTﬁT) :— Minimum

U0 gge =277 V(l ) (19)

+ Maximum .
For SIO, the relative velocity will be O at a- 1 while, for OSSS—_—-,%, it

will be equal bo I‘l-"k at 2, and there only. Then, the approximation for the
effective interception cross-section (18) will be useless. An upper limit for
the maximal catchment cross-section may be obtained by considering the restricted
three-bodies problem.,

In the system of sun and earth at rest, the Jacobi integral
¥=20Q(z,y,2)-C,

whenSl is some sort of a potential, applies to the velocity of a particle having

Jacobil's constant C. Hill's limit curves of 28 =C restrict the range of movement
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. The integrand of the last equation is, when we disregard the distribution

functibn and the factor a~3/2. Oepik's collision probability per revolution of

the partiocle Z?QSI, Equation (2322ﬁ But, the derivation of the formula as found
in this paper shows that the denominator of this equation is exact, provided that
the interplanetary density in regions of the order of magnitude of the catchment
cross-section of the earth may be considered constant. It will also be possible

to write, by using the density, equation (11), that

: /’ff U'+9£’3 Na,e, z)dadedii
!
m— n R?- n(l 0) 9 “m“l/o———-a(l—e')sml '
N(a,e,1)daded: |

’ a¥’t 1/2—%—_a(1—e’)sini 5\
'J'tR n(l,0)

=33 27l

The "effective incidence velocity™ Ugpp, Which has been defined thereby, will be
of the order of magnitude 1, in accordance with equations (17) and (19), when we
disregard the case of U=0.

On the basis of equation (20), we shall obtain - from the distribution function
of the orbital elements N (a,e,i) - independent estimates of the minimum and
maximum numbers of the incident particles; on account of the assumptions made for
the derivation, however, these estimates are not altogether cogent. The funotion
over which the mean value is ascertained in (20), will have a minimum of the
value of 2U'§O.744 for U'=0.1386. Thereby,'we shall obtain a lower limit of

Mpin= 27+ 0.744 - R 2(1,0).
(207)
An upper limit can be determined only for particleé, in which the radiation

pressure is not very considerable. It will then follow from {18') that

R

Mg = 27 - 265 - 365

n(l1,0)
‘ (20m)

The upper iimit presented here is rather unlikely, but - without any

assumptions regarding the model - it can be depressed only, to some extent, by more



15

precise calcuiations in the field of celestial mechanios,

It is possible that, due to the secular gathering of dust by the earth that
has been discussed in detail by E. Oepik (1951), a discontinuity of the dust dis-
tribution of the interplanetary dust prevails at the distance of the earth from
the sun. This would have to be particularly noticeable in the case of the larger
particles, in which such an effect will be less obscured by disturbances. Such a
discontinuity will go unnoticed in zodiacal light observations, since there, the
mean values are always determined over large areas. The conclusions relating to
the distribution function of the orbital elements as obtained on the basis of
the integral for the particle incidence (20) are, therefore, not so generally
valid as the ones reached on the basis of the density integral (11).

Il. A model for the distribution function of the orbital elements.

l. Conditions. First conclusions.

We shall consider models that are as simple as possible, in order to obtain
an idea or the connection of density and distribution function as formulated in
equation (1ll). The distribution function shall be the product of three functions
each one of which shall depend on one orbital element only:

N(a,e,i)=N,-N,-N,.: (21)

Hence, the integration over i can be separated directly from the two other

ones. This first integral,
n/2 i
N.di L

Ty
f Vsin’i — —ZTcoe’i

arctg z/e

n; = (22)
depends solely on z/ ?’ e As to the density problem, the sense of the rotation of
the particles is - as may also be seen from the denominator of the integrand -

without any importance., For that reason, the sum of the direct orbits of the in-
clination i and of the retrograde orbits having an inclination of 180° - i will be
designated as Ny, and the integration will be extended solely over one haif of the

intervai (13).
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Best regards.

Mr. John M, Weaver, lLibrarian
Goddard Space Flight Center, NASA

I inclose the following German translation:

Haug: ®On the frequency distribution of the orbital elements
in the inter-planetary dust particles” [From: Zeltzohrift
e Agtrophyeik, W 7197 (1958)] , |

There are approximately 9,900 words.
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e=0

- 1 : Njx-r)- N, dxde
Rae= 97 / f z)2x —1— a2l — &) K (23)
1

In the ecliptio, € ®r and n

a,e,= "a e (gﬁ will apply, and the density dis-

tribution will be - when we assume the convergence of the double integral =
'w\a',)m,, =c-pt? for N,= c'a*. (24)

For that reason, we shall be able to represent by formula (21) a prescribed
density distribution in the ecliptic and at a certain distance from the sun and
vertically to it, by a suitable choice of the distribution function. This agrees
with the data that may be determined, e.g., on the basis of zodiacal light observa-
tions, Here, Ny will still remain undetermined, except for convergence conditions.
Clues for its selection will result from considerations of the supposed dust genera-
tors in the planetary system or - as we shail explain in more detail in Section II,
4 - from the relative frequency of the eccentricities in meteors. It follows from

equations (22) and (23) that the density amounts to

n(g, z) = n,, (g, z)-m(—Z—). (25)

2. Discussion of the exponential laws governing the distribution of large semi-axes.

We shall consider here but a few whole values of k. Intermediate values are
possitle, but in that case, we shall have to determine numerically the value of the
double integral in (23) for an appropriate Ny

k=0, i.e. - in accordance with equation (24) ~- a density decrease with g"z
will hardly be assumed any longer today. In that case, there would be

1
- l _N l 1—¢ d
Moo= 377 [arcsm py ] e=—— 1| N,de. (259_)

e=0
For N,  const. the density contribution of equal e—lntervals would be equal,

For the more probable case of Ng toward O for e toward 1, tne density contribution

of the particles of smaller eccentricity would be larger. When we first integrate



17
over e (for Nél= const), then we shall find that the density contribution of the

particles with 1/,<a <1 would have to be equal to the particle with l1Sa<oo. |

dzde |
// zf2z—1— (1 —e)

can be indicated also for regions forming part of 8 , it will be suitable to

Since the integral

serve as the basis of numerical calculations, in which Na and Ne will be considered
to ve approximately comstant in tiaose regions.

A density decrease with, approximately, g’-l will result when it is desired to
explain the zodiacal light solely on the basis of the scattering of the light of
the sun. If the polarization of the zodiacal light is a consequence of the scatter-
ing on free electrons, then there will remain a share of luminosity that, near the
earth, will best be represented by a constent dust density in the ecliptic. This

density will be, for

: YN i
r zdx _nr Node . 2
Pare = fN, / et et /—«———(lﬁe,,n,. ‘ (231b)
1

I+e

X
2

N must, for e ~—3 1, move more pronouncedly toward O than (l-e)®. There will

2.1 for Ne=l-¢

e ‘
Ra,e = L! for ch__ (- 82)3/2.;
e

In the first case, the density contribution will increase as the excentricity
increases, while it will be constant in the second case. Since, undoubtedly, an
essential part of the dust is being generuted by comets with a larger e, 2 law of
distribution invoiving the smallest possible decrease, as e increases, is more probable.
In the rollowing, we shall consider the distribution law N, x N, = az(l-ez) exclu-
sively.

Since, in the case of this law of distribution, the contribution of large vulues
of a to the density is very considerable, we shali nave to examine which effect an

ending of the dust cloud wiil have at a maximal large semi-axis or aphelion distance.
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It follows from the numerical caloulations in 11, 4 that the double integral in

(23b), and thereby the density, will decrease between @ =0.5 and @ =1.5 by

10% in the case of 8 ax = 2V A.U., and by 12% in the case of 8 ax = 10 AU, (When
we assume meximal aphelion distances, then the same values will result for é;(Lfelz;x
= 20 A.U. and é;(k*°27ﬁax = 40 A.U., respectively). This decrease of the density
will partially be cancelled out again by the a bsence of the particles in which a is
smaller than a minimal large semi-axis, or in which a(l-e) is smaller than a minimal
perihelion distance. Since the vaporization limit is largely dependent on the physi-
cal properties of the particles, we made only an estimate in the same manner as
above, for the purpose of preliminary orientation, to the effect that an absgence of
all particles with a <0.4 would bring avout a density increase of 5% between C = 0.0
and @ = 1.,0. A minimal perihelion distance of 0.1 A.U. (ef. van de Hulst, 1947, p.
48V) will be but slightly noticeable according to the law of distribution adopted:
between © 0.5 and@ =1.5 A.U., we shall have an increase in density of less than
4%.

It follows from equations (22) and (23b) that, for k 2, the density will depend
solely on the ratio ?/r. When we consider this from the point of view of space,
then the areas of constant density will be cones the uxis of which is vertical %o
the ecliptic and the vertex of which coincides with the sun. Such a distribution of
aensity appears rather plausibie for particles on Kepler orbits within the field of
& central mass. But, as it happens, the density decrease that is vertical to the eclip-
tic has been derived by Elsasser (ivyb4, p. <8i) on the assumption that the surfaces

2]

of constant density are planes tnat are parallei to the ecliptic. When we plot the
curves of constant demsity according to the two assumptions in the elongations of the
sun as applied (c? = 350, 42.50, 650, 8U°) then it willi become apparent that, on the
basis of the new assumption, the lengths of the visual rays wiil be reduced in the
regions of higher density. So as to be able tc represent tne measured vaiues of

luminosity now, just as before, we should have to assume that the density at the dis-

tance of the earth from the sun decreases more slowly in a verticaui direction to the
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ecliptic than on the eariier assumption. But, we shall be able to see, at the

same time, that - for ail the elongutions in the ecliptic used and for ail the in-
clinations toward the eciiptic applied - the effect for Z =0.2b6 A.U. will not ex-
ceed 10%, and that it also will not exceed 50% for the larger distances. But, the
data obtained so rfar are not any more precise than that, as has been shown already
by the difference uf the curves I and II that show the decrease in density, as pre-
sented by Elsasser., For that reason, these curves will be used unchanged in the
derivation of the distribution of the inclination. But, it would be desirable to
have new observations reduced, on the assumption that the cones under consiusration
here are surfaces of constant density.

3. Determination of the distribution of the inolinaution

For this purpose, we used two methods: on the one hand, we evaluatea equation
(22) for various modeis of Ny; on the other hand, we solved the integral equation
for Nij by approximation on the basis of the empirical density distributions.

When the inclinations are distributed eveniy, we find - as it is well known -

that N, = ZSini'
n/2 .
smzdc 1'cosz]"/2 To (A)
BJ'CCO == =
[ arccos ¢/, r
f l/ = — cozti ot : ' .
arccos o/r - - B e ( 22&)

This distribution is intended to serve as a reference function when we rasclve
the integral into a sum, If we simply pull ous N;, in a partial intervai, from the
integrai (22), then we shail encounter convergence difficulties for i = 0, since
each distribution is to have a maximum, but not a peak, for z =0,

When the density decreases vertically to the ecliptic, then N, wili have wo
™

move toward O for i ~¥7>-*i:. This will, e.Z., be the case at cos i. This will lead

to models having a form of -
N,=c-sini-cos’i. (B)

due to the increase with sin i for smaii i's, Then we shalli find that

cQ t"dt (g)v, (ZZb)
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when N is fixed in such a way that ni(O) = l. High vaiues of Vv will be required
i

Lo represent the empirical curves. This characterizes the strong deviation of the
empirical distribution of the inclinations from the equipartition. Fig. 3 shuws
the n; 's as taken from Elsasser's curves I and II (1954, p. 284; I corresponds to

the decrease or' luminosity North of the ecliptic; II corresponds to it South of the

ecliptic) for ¥ =24, 48, and 64.

lﬂ\ T v xT .

2
49

t 4 ‘ | Z
Mg i
42 ‘\\ S ! N <
} ~ \ \‘\
0

l —tnae
g L4 74 24 4¢ 95 4f 97 g8
Z AV —

Fige. 3. Distrioution n. on the basis of the density decrease taking place
vertically to the ecliptic, according to zodiacal light observations.
(H. Elsasser, 1354; curves I and II), and according %o Model B for
=24 ( = ARG and =64 (———)

A closed presentation may be desirable for some theorstical problems = it is
also possible still to improve the models B without any difficulty - but when an
exaot approximation of the empirical curves is of decisive importance, then an inver-
sion of the integral equation (22) ftor N, will be preferable. This inversion ocan, as
may be mentioned parenthetically, bs carried out in an exact manner, By means of

transformation, we shall obtain an Abelian integral equation for Ni/sin s With the

inversion %
dn(o - ) .
N, =_£ [(1+31)T + sni(g-s){ds (26)
sinid 1 T a - — }
_ V1+s“'”g"

tgi

For the purpose of practical calculation, it is more convenient to resolve the in-
tegral (22) into a sum, by dividing the i-region into K o 1 intervals, Now, however,
not N, but - as intimated before - N;/sin; shail be considered constant for i -¥ 0,

because of the behavior of Ni. Then, we shall have

ni(zl)=k§0( ol )k'J""' (27)

sing
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For the coefficients, we shall find with the aid of equation (2zu) that

/3 7 . . T % . :
Vo i o <ar°°°S Vet & 22 - co zz, °B% _ arccos ——VQ' + zi’-——e%’ﬁl)\
' |
Tea= arccos —-—o <4 <X
‘ for otherwise 1% Vot =2 = =g (28)
U

In the case of a definite i-division, we shall select the abscissae zz for the

reference points of the curves oi the density decrease in such a way that

al‘COOSVeTi?=i, l=0,l,...,K

Then, there will be

( N, ) — n,(2x)
ini /K J
and generally s e

af I S J
(m.’)f L ”"(z')_h%l(sini)k' klfo (277)
i.8s, it will be possible to resolve the integrul equation from iarge z's. On the

basis of the values found, we shall obtain (Ni)l by multiplying by

(sing), = ——%Tiﬁ hEA

Intervals ha;ing a latitide of 5° were selected for the evaluation of Elsasser!s
curves for U §éi. §§4Z?llegib;§7‘while intervals of a latitude of 15° were selected
for 45 §; i §é 90°, i.e,, for z values for which the ourves of the density decrease

will have to be extrapolated. Table I shows the vaiues of Jk while Table 2

,1
presents the founa values for (Ni/sin i)l J, and (N’i)l for Eisasser's curves I and
II and for the mean III of these two curves, In Fig. 4, the percentage-wise fruv-
quenciss of the inclinations have been compared with the interplanetary frequencies
of sporadic meteors as found by F. L. Whipple (1954, p. 218, Table V, column 4). The
agreement - particularly of I = with the data relating to the meteors is surprisingly

good,

4., Calculation of the relative frequency of the orbital elements of meteors.

We shall now calculate the relative frequencies of the orbital elements a, and

e, and i, in the case of (micro-} meteors, so as to arrive at a first comparison of
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Fig. 4. Percentage-wise frequency of the inclinations in intervals naving
a latitude of lO° for the share of dust of the zodiacal light (curves
I to III) and in the case of meteors (interplanetary), according
to F. L. Whipple (luyb4; -x-)

the consequences of the model found with the material regarding the orbits of mete-
ors; very little material of this type has been pubiished up to this time. The
photographic results obtained by the use of the Super-Schmiat cameras @ore than
4,000 two-station photographs of meteors up to the beginning of 1966 (E‘.‘_. D. H.
Menzel, 195517 and the results of the three-station observations by radar (_?,400
sporadic meteors (cf's A.C.B.Lovell, 1956_)_7 will soon make a comparison with small
regions da x de x di of the orbital elements, according to equation {(14) possipile,

Since the closed integration of equation (20) rails, on account or the compli-
cated connection of the or_'bital eclements in U, the integration region B of a and
e was subdivided into 52 partial regions. Fig. 5 shows this subdivision (43 regions)
for a £ 5 A.U.; for larger ats, the stri, between a *1/l=e ani @ =1 up to 10 A.U.

was subdivided into piseces having a iongituae of L A.U.; it was further subdivided

at a= 15, 20, and 100 A.U. (9 regions). We calculuated

// dade (29)
al2a‘—1—d’(l—e')

for each region 43, . In adadition, we determined the frequency factors of the

model being considered, viz, 8‘3’ and 1 - 63’ and finally the products AV 5‘3’ (1 - e%)

for the points of gravity a v © of the surfaces 4B, . These factors have been
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i.ndicated in Table 3, together with the sums of the products for constant e @um
(a)_:7 and constant e L's'um (e)_:7. The Table affords, by means of & comparison of
the individual values with the sum of all the products 4.2505, an idea of the con~
tribution of the partial regions 48, , to the interplanetary density in the cause
of the model under consideration. Finaily, we calculated at the same locations a
and e, , and for i}A = 5(2/,( -1)(}4 =1l,, « « « , 9), and in accordance with equation
(18), the relative velocities U'V)r in units of the velocity of the orpit of the

1)

1
ori = Uvﬂ <+ 0.159/UV,A

for i = 5°; 81l of them are located be-

earth, and the "effective™ relative velocities (U’V)* )
Table 4 indicates the values of (UV/A Jert
tween 0,7 and 1.3. It is true that this is dus, in part, tu the gross subdivision
into intervals. 1In the following, we shall disregard the retrograde orbits which
are considerably less frequent among the orbits the meteors, uespite u greater

probability of impingement, The frequency factors of the inclination in the inter=-

val around i/“ are

N, ,.
J, = f di . (30)

71z a5a5 0510
8=—e
Fig. 5. Integration region3®' of the orbital glements u and e and its
subdivision for the purpoese of numerioal integration.
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In the calculation, we applied the values X in Table 2 to that equation.

Then,

we shail have doubie sums instead of the triple integrals in equation (20), and the

"effective veiocity of incidence" as defined there wiil become

9 52 -
2 Z (Uv;l)ell"]p Avai(l - ee)
pu=1v=1
9 52
2 Jp 2 Araz(l - 83)
p=1 v=1

Ucll =

(31)

When we evaiuate the sums in the numerator in part only, and when we divide by

the total sum (31), then we shail have the relative rrequency of the patn elements

in meteors.

do not sum over )k s

52
§1(U,p)c”‘ JuA4,a5(1 — ¢})

My = "9 "33 §=
2','1 z‘l(U,,,),,,-J,, 4,a2(1 — €2)
p=1r=

E.g., the frequency of the inclinations will turn out to be, when we

1,....9,

In the same way, the distribution of the large semi-axes and the sum of the ec-

centricities may be obtained by summing at V

only over those series that contain

all partial regions of a certain e—interval or a-intervul.

Table 5. Coefficients A4,a®(1 —¢€d)
M 0002 | 02—04 ‘ 0406 | 0608 | 08—10 |Sum
50 —100 | 1544 | 154
20 — 50 ' 2107 | 2100
15 —20 K | ] .0983 .0983
10 — 15 3 = 1727 A7
9 — 10 : 0497 | o4y
8 — 9 0598 | 059
7 — 8 1 0709 | 0709
6 — 7 ! 0879 | 0879
5 — 6 1173 | .um
45— 50 0274 0539 | 0813
40— 45 \ 0577 0435 | 102
35— 4.0 ; .0920 0385 | 1303
3.0— 35 ! 1190 0346 | 143
25— 3.0 a 1723 0306 | .20%0
20— 25 1270 | 1340 | 0274 | .28
1.8— 20 1022 | .0407 o101 | 153!
16— 18 0129 | .1252 | .0367 0097 | 1845
14— 16 1071 | 0865 | .0339 0001 | 236
1.2— 14 | .0187 | .1905 | .0698 | .0313 0088 | 3191
10— 1.2 | .3369 | .1374 | .0626 | .0299 0086 | 5754
08— 1.0 | 2745 | .1616 | 0648 @ .0304 0087 | 5400
06— 08 0503 | 0820 | 0469 0104 | .18%
05— 0.6 | L0079 0076 | 015
Sum .. (a)| .6301 | .6598 | .7201 | .8601 | 1.3832 | 4.23%
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éo as to be precise, we may not compare these calculated frequencies directly with
the observed ones, since the discovery probability is another factor going into the
latter ones; they may be reprssented, uccording to F. L. Whipple (1954, p. 209 sq.),
as a function of the velocity of the meteor at the time of its entry into the atmos-
phere. For the purpose of a first rough comparison, we have done without this cor-
rection.

In a paper by F. G. Watson (ldoy), perhelion distances and inciinations have
been derived from meteor radiants, according to a grapnic method, on the assumption
of parabolic paths. S0 us to be able to use for our comparison also this numericaily
larger material which, however, is only provisionally conclusive, due to the asjsump-
tions made, we have attempted to calculate the conuribution uf regions of constunt
perihelion distance to the interplanetary density, since the frequency distributions
that are obtainad in this way, are not different to any considerable extent from those
occufring during the fall of a meteor; of. the considerations reliuting to the Mvelocity
effectY in I, 3)e

Table 4. The "effective™ relative velocities (Ul in partial regions of
A%, for i =59 (by way of example),

\1\\ * | oo—02 | 02-04 | 0.4—06 ! 0.6—038 | 03—1.0
@A U : | i

\ : -
50 —100 ‘ f P 1132
20 — 50 | i ©OL11l
15 — 20 ; ! © 1120
10 — 15 ‘ : ; R SV
9 — 10 ‘ . 1.105
8 — 9 ; 1.105
7 — 8 ‘ 1.097
6 — 17 ; ‘ 1.092
5 — 6 . 1.071
45— 5.0 CT4T 1.093
10— 4.5 . .756 1.127
35— 4.0 : : .82 | 1160
3.0— 35 ‘ ’ | 8oz | 1192
25— 3.0 818  1.121
20— 25 | .45 1 863 | 1.243
1.8— 20 ‘, | .746 9810 | 1.253
1.6— 1.8 803 ' 149 - 932 1.253
14— 18 98 | 184 ' 948 | 1250
1.2 14 1.048 ‘ Jq16 ., 183 968 | 1.238
1.0— 1.2 1196 | 755 | .792 i 953 | 1.214
0.8— LO 1124 . .75 a1 922 1.166
0.6— 0.8 © 808 - .748 .864  1.078
0.5— 0.6 : ; - 7986 .961 —



27

. We shali have %o insert the distribution of the inciination Ne==l-ez into

(25b) and to make the substitution

a(l +e)=q; a(l-e)=p

°r |22 2a,
_gtp ,_ga—p |2 0P| _ 1
TETRT T UE P (9. 2e| PHA (32)
g dp.
When we do, the integral region I will become the region ¥’
0<spsl; 1sg<+>=.
Hence:
1 oo 1
Ng,g= Ny, o= 2 p;ﬂﬂ____zn -—%: (33)
pzoqzl-(erq)’l(l—P)(q—l) J @+ —p

nt
The exscutiun ol the second integration will give = as in (23b) = n4e~™ 2

Ths contribution of the intervai of the perihelion distance of 0= plgp;i;pzé 1

wili be, in tnis equation:

,Ah=n[érccosp+p1/i;:]:. (34)
The density comtribution ﬁill increase és the perinelion distance incruvases. Inase
much as the frequency distribution oi the meteors is concerned, the effect of the
velocity counteracts this inorease with p, since the velocity wili decrease as p in-
creasevs, at least in the cuse of the larger aphelion uistances und of inclinations
that are not overly large (q;;Schﬁfl as may easily be seen by a consideration

of the reiative veiocity according to equation (16):

U=_ 2nl/3— p_z*_q —21/%-0031' (35)

In Figs. 6 to 9, the curves caloulated have been compared with the empirical
datu, In the caléulation ol the percentage-wise frequencies, we have used the number
of 1 é; 90% as that of the meteors for the total frequencies of the inciinations; for
the large semi-axes, we used the numver of a g; 100 A.U.s As to the latter ones, we

also increased the lengths of the intervals as /illegible/ increased ana we calculated

the mean meteor frequency per A.U. semi=-axis interval by dividing by the lengun ot
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the interval. On the other hand, we added, for the statistics of the eccen¥ricities
the hyperbolic meteors to the interval of UJS;E e ;§ 1.0, since the eccentricities
originate - according to Whipple = solely in the scattering within the measurements
of the velocity. Since the particles that occur in flows also contribute to the
zodiacal light, a compromise was used for the statistics: the strong meteoric
showers that were - in Whipple's paper - represented by more than 5 single meteors
(geminids, perseids, North- and South-taurids, leonids) were in each case counted

as two meteors only; no difference was made between meteors originating in weaker
showers and sporadic meteors.

When we take into account that the model distribution was established for par-
ticles of an entirely different order of magnitude (r A2 10'3cm)(it is true that, in
the choice of the distributior of the eccentricities, the experience gathered in the
astronomy of the meteors and of the comets were a determining factor), then it is
surprising how similar the curves are. When, by way of a test, we assume that the
suppositions that were made for the purpose of evaluating the data relating to the
zodiacal light, i.e., particularly the validity of equation (21) are correct, then
the following should be stated, in detail, inasmuch as the Figures are concerned:

Iy
%

4

E4

20|

70

Fig. 6. Percentage-wise frequency of the inclinations of the orbits in the
case of meteors, in intervals having a latitude of 10° as calculated on
the basis of the model of the dust share of the zodiacal light (-@-),

according to the photographic meteor orbits by F. L. Whipple (1954;
-0-), and according to meteor radiants by E. Oepik (=-== A---=)
and by Niessl-Hoffmeister
(-x =); cf. F. G. Watson, 1939).



29

P,
LY

[~e

L4

2 Vi

20 4 |

P

2\,
” rz& / Sk~ L8] o
St e
— » ;
4 4—-’--—-‘ .-_———-.‘—r i
¢ 97 /74 a3 a¢ 25 36 a7 Y 29 7] !
pea(7-6) ~~ ]

Fig. 7. Frequency of the perihelion distances in the case of meteors:
Percent by intervals of 0.1 A.U. -~ According to F. L. Whipple
(1954; -0-), E. Oepik (====A ----), and von Niessl-Hoffmeister
(=x=); of. F. G. Watson, 1939), and interplanetary frequency
of the perihelion distances on the basis of the model for the
zodiacal light dust (-e-).
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Fig. 8, Percentage-wise rrequency of Fig. 9., Peroentage-wise frequency of the
the eccentricities e in the case of large semi-axes per-interval of 1 A.U.,
meteors, in intervals of 0.2 in e, as in the case of meteors as calculasted on
calculated on the basis of the model the basis of the model for the dust share
for the dust share of the zodiacal light of the zodiacal light (-€-), and according
(-9-), and according to F. L. Whipple to F. L. Whipple (1954; -o-).

(1354; -o-).
Fig. 6. Tne calculated frequency of small inclinations appears to be somewhit
too high., But, it is due less to the steepness of the slope in the case of smaller
i's than to the absence of inclinations of :> 452 in the theoretical curve, If we

analysed the decrease of density, we should obtain these inclinations, e.g., by &
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‘superimposed constant density (inclinations of A/ sin i). The distribution of the
inclinations of the comets with long periods (g{. Je G. Porter, 1952, p. 43) sug-
gests that an isotropic part of the inclinations exists. It is very difficult to
observe the luminosity effect of such a dust particle in the zodiacal light.
Fig. 7. The correction of the velocity as considered above acts in such a
wey that the deviations existing between theoretical and empirical distribubtion will

be reduced,

Figs. 8 and 9. Nothing but Whipple's material is available for the comparison

of the calculated frequencies for a and e. But, while the curves for large at's and
e's are very similar, empirically and theoretically, characteristic differences occur
for e é 0.5 and for O.Séa é 2. In both cases, the consideration of the probabil-
ity of discovery in the observed curves would have to have the effect of decreasing
the deviation. A remaining deviation could be corrected by a modification of the
law of distribution of Ne - Qefe, ez(l-ez) instead of l-e® - since after all, this
law remained indefinite in II, 2. But, according to A.C.B. Lovell (1956), one
fourth of all orbits of meteors of 7% - 8T have, on the basis of radar observations
made at the Jodrell Bamk Experimental Station, eccentricities of < 0.5 - in the
model, the result is approximately 1/31 On the basis of the ideas relating to the
subsequent delivery Zﬁhchlieferuné? of the dust ocaught by the sun and the planets

as discussed by F. L. Whipple (1955) in detail, it is also probable that the secular
gathering effect which we have mentioned several times, has a stronger effect in the
case of larger particles, so that - under certain circumstances - the empirical dis-
tributions may, in the case of smaller particles, come close to the calculated ones.
For that reason, the chosen law of distribution of Ne was retained,

5. Particle incidence and mass incidence upon the earth.

The calculations performed make no new contribution to this problem. The well-
known statement (H. C. van de Hulst, 1947; H. K. Kallmann, 1955; M. Minnaert, 1955;

F. L. Whipple, 1955) to the effect that interplanetary density is, on the one hand,
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Jdarge enough to result in the expected mass incidence but that, on thé other hand, no
continuous transition seems to be possible from the interplanetary law of the
distribution of radii to the law of the distribution of radii as based on meteor
frequencies, remains valid. Inasmuch as the order of magnitude of the radius is
concerned, for which this transition might be anticipated, the frequency values as ob-
tained on the basis of the different.laws differ by several powers of ten.,

In any case, the model established supplies a very definite value of the

etfective incidence velocity, viz.
U,ff = 095 .

For a model with Ng=const. and a‘;izo A.U., we found that Ugpp 1s equal to 1.1
We shall now be able to use equation (31) to calculate the particle incidence or the
mass incidence = depending on the insertion of the interplanetary particle number/cms,
or of the interplanetary density, for n(1.0).

According vo H. Elsgsser (1955) the best simultaneous representation of the
Ffaunhéfer corona and of the dust share of the zodiacal light may be obtained by the
following law of distribution of the radii s in the interplanetary dust:

n(8) ds = 10V7-865-2ds [em~3?]

Accordingly, the minimum particle size is located between 21.0"4 and 10'3cm,
while the maximal particle size is located between 10-2 and 10~lcm. On the basis of
a similar law of distribution of the radii, we shall also be able to understand -« in
accordance with calculations by H. Walter (1957) - the anti-zodiacal light according
to Mie's theory. At this moment, the constant of the law is probably the most
uncertain point. When we assume the independence of the law of distribution of the
orbital elements having the size of particles (section I,l1), then we shall find, with
the aid of equation (20), in regard to those particles that are larger than 10™%cm
Uery is uncertain for smaller particles, on account of the effect of the radiation

pressure (1,3)! ) that the frequency of micro-meteors is as follows:

nR?

R 3 U,y n(s) ds = 109511708 42 ds 4], (36)

m(s)ds=
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Nothing definite can be stated as to the total number of the micro-meteors,
since the small particles are the determining factor in that respect. On the other hand,
the incident mass depends on the upper limit of the particles, up to which equation

(36) will be valid, The total mass will be

2n o

M ~1008- 202 [gd). (37)

We shall obtain the following Tabulation for a density of the particles of 6’7-'4:

8mazx [cm] l 1023 | 10— | 10733 T o

Mipd | o371 | 37 | 31 | 370,

b

To this, there will have to be added a few t's as mass contribution of the
large meteors. The values found are rather somewhat too low in relation to the
value that is being considered most likely today (lOst/a and more; F.L. Whipple, 1952).
But, when we transform the meteor frequencies as indicated hy f.G. Watson
(1939,1956) and others (gffalso, €¢Ze, AeCeB. Lovell, ;954, Chapter .WII) and as
dependent on the luminosity into frequencies as dependent on the radius by means of
a mean relation between radius and visual luminosity, then the frequency will lie for
107 cn - such particles may still be considered meteors = under the value indicated
in the equation(3§L by five powers of ten. For that reason, it is not possible to
join equation (36) with the frequency of the radii into one general law governing
the meteors.
The model of the distribution function of the orbital elements as considered
here is - being a first attempt and as such, is still somewhat schematic, The
following characteristic joint properties of the orbits of zodiacal light particles and
of meteors, however, come clearly to the fore: The majority of the orbits have
small inclinstions. The main contribution of the density and of the meteors as well
is supplied by particles having a large semi-axis of > 1 AeU., in the perihelion.
The high frequency of the medium and large eccentricities of the meteors as an
apparent effect due to the "geometry™ of the catchment of the particles that is also
due to the varying velocity of incidence.=- The possibility camnot be precluded

altogether that meteors and zodiacal light particles are a group of particles within



33
zelatively limited intervals of the orbital elements (a=2-6 A.U., e=0.6-0.9,

i-0-20°).- on account of the findings described in the preceding Section, several
investigators (H.C.van de Hulst, 1947; H.K. Kallmann, 1955) postulated two different
components of the interplanetary dust: a zodiacal light component on circular orbits,
and a meteoric component on orbits of greater eccentricity. On the basis of the com-
parison of the frequency of the orbital elements as carried out here, this postulate
appears to be, at least, over-refined: the distribution of inclination and the
distribution of the perihelion distances are probably similar for large and small
particles. An absence of large particles with small eccentricity and large semi=-
axis near 1 A.U. may be an apparent effect, because these particles are to be
looked for in the weaker meteors, due to their smaller relative velocity; otherwise,
such an absence can be explained easily by the lesser action of the Poynting-Robertson
effect.

I express my sincere thanks to Prof. Dr. H. Siedentopf, my esteemed teacher, for
suggesting that I take an interest in this problem. I am grateful also to him and

to University Lecturer Dr. G. Elwert for helpful discussions.
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